
ROLLED PRODUCTS DATASHEET

Rehmühle 1, 35745 Herborn, Germany Tel.: +49 2772 5002 506 www.boway.de

PRODUCT LIST

Alloy System	Boway designation	Former designation	UNS	EN	JIS	GB
	boway 18150	C18150	C18150	CuCr1Zr	_	TCr1-0.15
CuCr/Zr	boway 18160	C18160	C18160	CuCrZr	_	_
CuNiP	boway 19000	PW49700	C19000	CuNi1P	_	_
CuFe	boway 19210	C19210	C19210	CuFe0.1P	C1921	TFe0.1
Cure	boway 19400	C19400	C19400	CuFe2P	C1940	TFe2.5
	boway 19005	C19005	C19005	_	_	_
	boway 19010	C19010	C19010	CuNiSi	_	_
CuNiSi	boway 70260	C70260	C70260	CuNi2Si	C7026	QSi0.6-2.1
	boway 70250	C7025	C70250	CuNi3SiMg	C7025	QSi1-3
	boway70250HS	C7025	C70250	CuNi4SiMg	C7025	QSi1-3
CuNiCoSi	boway 70318	PW47100	C70318	CuNi3CoSi	_	_
CuZnSnNiSi	boway 42300	PW33520	C42300	CuZn10Sn1NiSi	_	_
	boway 14415	C14415	C14415	CuSn0.15	_	_
	boway 51000	C51000	C51000	CuSn5	C5102	QSn5-0.2
	boway 51100	C51100	C51100	CuSn4	C5111	QSn4-0.3
Bronze CuSn /	boway 51900	C5191	C51900	CuSn6	C5191	QSn6.5-0.1
	boway 52100	C5210	C52100	CuSn8	C5210	QSn8-0.3
	boway52400	C5240	C52400	CuSn10	C5241	_
	boway 51100 SG	C51100	C51100	CuSn4	C5111	QSn4-0.3
	boway 51900 SG	C51900	C51900	CuSn6	C5191	QSn6.5-0.1
	boway 52100 SG	C52100	C52100	CuSn8	C5210	QSn8-0.3
	boway 77000	C7701	C77000	CuNi18Zn27	C7701	BZn18-26
CuNiZn	boway 75200	C7521	C75200	CuNi18Zn18	C7521	BZn18-18
	boway 76400	C76400	C76400	CuNi18Zn20	-	BZn18-20


Material Designation

Boway designation	boway 18150
UNS	C18150
EN	CuCr1 Zr
JIS	
GB(China)	TCr1-0.15

Chemical Composition*

Cr	1	%
Zr	0.1	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Suitable
Power Connector	Very suitable
Miniaturized Connector	Suitable
Switch / Relay	Suitable
Semiconductor	Notrecommended

Ideal for power connectors

Characteristics

High electrical conductivity and thermal conductivity combined with medium strength.

Excellent stress relaxation and softening resistance.

Fabrication Properties

· ·	
Cold forming	Good
Machining	Not suitable
Electroplating	Average
Hot dip tinning	Average
Laser welding	Average
Resistance welding	Good
Soft soldering	Average

Density	8.9	g/cm ³
Electrical	85	%IACS
conductivity @ 20° C	49	MS/m
Thermal conductivity @20°C	320	W/(m·K)
Specific heat capacity	0.381	J/(g·k)
Modulus of elasticity	135	GPa
Poisson's ratio	0.33	
Coefficient of	18.6	10 ⁻⁶ /K
thermal expansion**		

^{*} Typical values at room temperature for reference. ** average value between 20-300° C

Mechanical Properties

Temper	Tensile stren	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R480	480 - 570	70 - 83	≥ 450	150 - 190	≥8
R540	540 - 630	79 - 92	≥500	160 - 200	≥4
R600	600 - 690	87 - 101	≥ 560	170 - 200	≥2

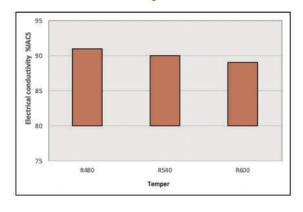
^{*}For reference only

Bendability Bending thickness < 0.5 mm, Bending width: 10 mm.

Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R480 (≤ 0.5 mm)	0.5	0.5	1	1
R540 (≤ 0.5 mm)	1	1	2	2.5
R600 (≤ 0.5 mm)	1.5	2.5		

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.

Packaging


Standard coils with outside diameters up to 1200 mm, Traverse-wound coils with drum weights up to $500 \, \text{kg}$. Multiple-coil up to $3 \, \text{tons}$.

Dimensions available

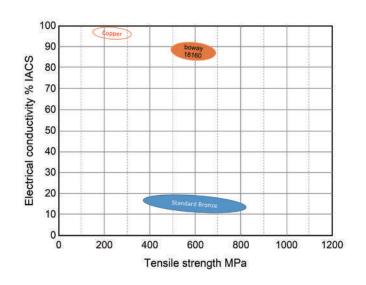
Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Electroplated and Hot-dip tinned strip available

Electrical Conductivity

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.


Material Designation

Boway	designation	boway 18160	
UNS		C18160	
EN		CuCr1 Zr	
JIS			
GB(Chi	na)		

Chemical Composition*

Cr	0.7	%
Zr	0.1	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Suitable
Very suitable
Suitable
Suitable
Average

Ideal for power connectors

Characteristics

High electrical conductivity and thermal conductivity combined with medium strength and improved bending formability.

Excellent stress relaxation and softening resistance.

Fabrication Properties

Cold forming	Good
Machining	Not suitable
Electroplating	Average
Hot dip tinning	Average
Laser welding	Average
Resistance welding	Good
Soft soldering	Average

Density	8.9	g/cm ³
,		O1
Electrical conductivity @ 20° C	88	% IACS
	51	MS/m
Thermal conductivity @20°C	340	W/(m·K)
Specific heat capacity	0.381	J/(g·k)
Modulus of elasticity	135	GPa
Poisson's ratio	0.33	
Coefficient of	18.6	10 ⁻⁶ /K
thermal expansion**		
* T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

 $[\]ensuremath{^{\star}}$ Typical values at room temperature for reference.

^{**} average value between 20-300° C

Mechanical Properties

Temper	Tensile stren	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R480	480 - 570	70 - 83	≥ 450	150 - 190	≥8
R540	540 - 630	79 - 82	≥500	160 - 200	≥4
R600	600 - 690	87 - 101	≥500	170 - 200	≥2

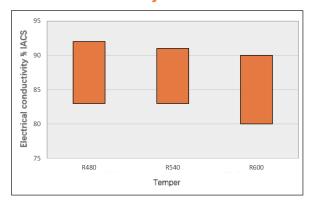
^{*}For reference only

Bendability Thickness range: ≤ 0.5 mm, bending width: 10 mm

Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R480 (≤0.5mm)	0.5	0.5	1	1
R540 (≤0.5mm)	1	1	2	2.5
R600 (≤0.5mm)	1.5	2.5		

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange- peel, however no crack.

Packaging


Standard coils with outside diameters up to 1200 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

Dimensions available

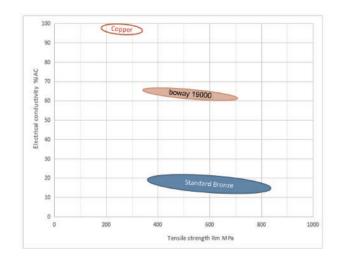
Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Electroplated and Hot-dip tinned strip available

Electrical Conductivity

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.


Material Designation

Boway designation	boway 19000
UNS	C19000
EN	CuNi1P
JIS	
GB(China)	

Chemical Composition*

Ni	1.1	%
Р	0.25	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Suitable
Power Connector	Suitable
Miniaturized Connector	Suitable
Switch/Relay	Not qualified
Semiconductor	Not qualified

Well suited for USB type-c, particularly for 5G Vapor chamber, relay spring and others.

Characteristics

High conductivity combined with medium strength and good corrosion resistance;

Excellent stress relaxation resistance and bending performance.

Fabrication Properties

Cold forming	Good
Machining	Not suitable
Electroplating	Good
Hot dip tinning	Good
Laser welding	Average
Resistance welding	Average
Soft soldering	Good

Density	8.88	g/cm ³
Electrical conductivity @ 20° C	64	%IACS
	37	MS/m
Thermal conductivity @20°C	253	W/(m·K)
Specific heat capacity	0.385	J/(g·k)
Modulus of elasticity	130	GPa
Poisson's ratio	0.33	
Coefficient of	17.6	10 ⁻⁶ /K
thermal expansion**		

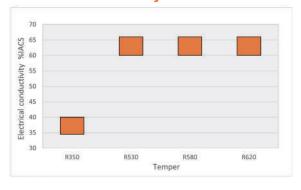
^{*} Typical values at room temperature for reference. ** average value between 20-300° C

Mechanical Properties

Temper	Tensile streng	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R350(TB00)	≤350	≤ 51	≤200	≤100	≥20
R530(TM00)	530 - 620	77- 90	500 - 600	165 - 200	≥8
R580(TM02)	580 - 650	85 - 95	560 - 640	175 - 210	≥ 4
R620(TM04)	620 - 720	95 - 105	600 - 710	180 - 220	≥2

^{*}For reference only

Bendability Thickness range: ≤ 0.5 mm, bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R530(TM00)	0.5	1.0	_	_
R580(TM02)	0.5	1.3	_	_
R620(TM04)	1.0	1.7	_	_

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.

Packaging

Standard coils with outside diameters up to 1300 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

Electrical Conductivity

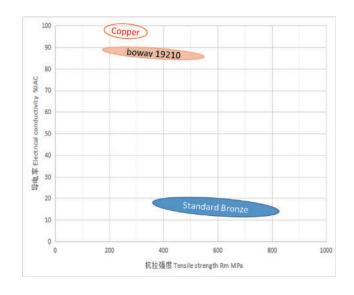
Dimensions available

Strip thickness 0.08 - 2.0 mm, other gauges on request. Strip width from 10 mm.

Hot-dip tinned and electroplated strip available.

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.


Material Designation

Boway designation	boway 19210
UNS	C19210
EN	CuFe0.1P
JIS	C1921
GB(China)	TFe0.1

Chemical Composition*

Fe	0.1	%
Р	0.03	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Suitable
Power Connector	Suitable
Miniaturized Connector	Notrecommended
Switch / Relay	Suitable
Semiconductor	Good

Ideal for semiconductor

Characteristics

Excellent electrical conductivity and thermal conductivity combined with good softening resistance.

It has medium strength and excellent bending formability as well as good corrosion resistance and good plating property. No sensitivity to stress corrosion cracking.

Fabrication Properties

Cold forming	Good
Machining	Fair
Electroplating	Good
Hot dip tinning	Very good
Resistance welding	Good
Laser welding	Average

Density	8.9	g/cm ³			
Electrical conductivity @ 20°C	89	%IACS			
	51	MS/m			
Thermal conductivity @20°C	350	W/(m·K)			
Specific heat capacity	0.385	J/(g·k)			
Modulus of elasticity	125	GPa			
Poisson's ratio	0.33				
Coefficient of	17	10 ⁻⁶ /K			
thermal expansion**					
* Tracinal values at a case to see the section of a section of					

 $^{^{\}ast}$ Typical values at room temperature for reference.

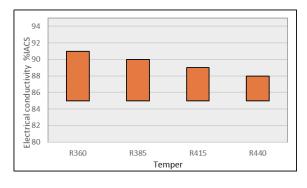
^{**} average value between 20-300° C

Mechanical Properties

Temper	Tensile streng	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R360(3/4H)	360 -425	53 - 62	≥345	115 - 135	≥4
R385(H)	385 - 455	56 - 66	≥355	120 - 140	≥3
R415(EH)	415 - 480	60 - 70	≥ 400	125 - 145	≥2
R440(SH)	440 - 510	64 - 74	≥ 425	130 - 150	≥1

^{*}For reference only

Bendability Thickness range: ≤ 0.5 mm, bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R360(3/4H)	0.5	1	1	1.5
R385(H)	1	1	1.5	1.5
R415(EH)	1.5	1.5	1.5	2
R440(SH)	1.5	2	2	2

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange- peel, however no crack.

Packaging

Standard coils with outside diameters up to 1300 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

Electrical Conductivity

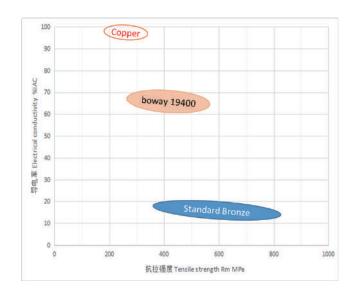
Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Hot-dip tinned and electroplated strip available.

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.


Material Designation

Boway designation	boway 19400
UNS	C19400
EN	CuFe2P
JIS	C1940
GB(China)	TFe2.5

Chemical Composition*

Fe	2.3	%
Р	0.03	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Suitable
Power Connector	Suitable
Miniaturized Connector	Notrecommended
Switch / Relay	Suitable
Semiconductor	Very suitable

Ideal for semiconductor

Characteristics

High strength and good electrical conductivity with excellent softening resistance performance and good corrosion resistance.

Standard material for semiconductor applications, stamping as well as etching quality available.

Fabrication Properties

Cold forming	Good
Machining	Not suitable
Electroplating	Good
Hot dip tinning	Very good
Laser welding	Good
Resistance welding	Good

8.8	g/cm ³
66	%IACS
38	MS/m
280	W/(m·K)
0.385	J/(g·k)
121	GPa
0.33	
17.6	10 ⁻⁶ /K
	66 38 280 0.385 121 0.33

^{*} Typical values at room temperature for reference.

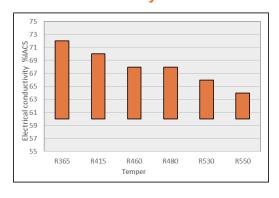
^{**} average value between 20-300° C

Mechanical Properties

Temper	Tensile stren	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R365(1/2H)	365 - 435	53 - 63	≥250	110 - 140	≥6
R415(H)	415 - 485	60 - 70	≥365	125 - 145	≥3
R460(EH)	460 - 505	67 - 73	≥ 440	130 - 150	≥2
R480(SH)	485 - 525	70 - 36	≥ 460	135 - 155	≥2
R530(XSH)	≥530	≥77	≥500	≥150	≥1
R550(SSH)	≥550	≥80	≥520	≥155	≥1

^{*}For reference only

Bendability Thickness range: < 0.5 mm, bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R365(1/2H)	0	0	1	1
R415(H)	0.5	0.5	1.5	1.5
R460(EH)	0.5	1	1.5	1.5
R480(SH)	0.8	1.2	2.0	2.0
R530(XSH)	1.5	2	-	-
R550(SSH)	-	-	-	-

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange- peel, however no crack.

Packaging

Standard coils with outside diameters up to 1300 mm, Traverse-wound coils with drum weights up to $500\,\mathrm{kg}$. Multiple-coil up to 3 tons.

Electrical Conductivity

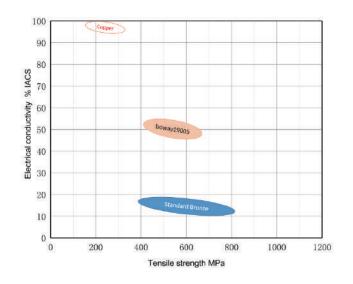
Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Hot-dip tinned and electroplated strip available.

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.


Material Designation

Boway designation	boway 19005
UNS	C19005
EN	
JIS	
GB(China)	

Chemical Composition*

Ni	1.5	%
Si	0.3	%
Zn	0.4	%
Cu	Rem	

^{*} Nominal composition

Application Target

Signal Connector	Suitable
Power Connector	Suitable
Miniaturized Connector	Suitable
Switch / Relay	Suitable
Semiconductor	Notrecommended

Characteristics

Medium electrical conductivity and medium strength combined with good stress-relaxation resistance, good corrosion resistance softening resistance and bending performances.

Fabrication Properties

· ·	
Cold forming	Very good
Machining	Not suitable
Electroplating	Good
Hot dip tinning	Good
Laser welding	Suitable
Resistance welding	Average
Soft soldering	Good

Density	8.9	g/cm ³
Electrical	47	%IACS
conductivity @ 20° C	27	MS/m
Thermal conductivity @20° C	250	W/(m·K)
Specific heat capacity	0.377	J/(g·k)
Modulus of elasticity	127	GPa
Poisson's ratio	0.33	
Coefficient of	16.8	10 ⁻⁶ /K
thermal expansion**		

^{*} Typical values at room temperature for reference. ** Average value between 20-300° C

Mechanical Properties

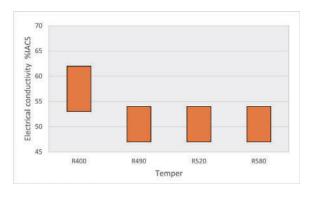
Temper	Tensile strer	igth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R400	400 - 460	58 - 67	≥360	120 - 150	≥8
R490	490 - 550	71 - 80	≥ 410	140 - 170	≥10
R520	520 - 590	75 - 86	≥ 440	150 - 180	≥9
R580	580 - 650	84 - 94	≥540	170 - 200	≥8

^{*}For reference only

Bendability Bending thickness ≤ 0.5 mm, Bending width: 10 mm.

Temper	90° R/T		180° R/T		
	Good Way	Bad Way	Good Way	Bad Way	
R400	0	0.5	0.5	1	
R490	0	0.5	1	1.5	
R520	0.5	0.5	1.5	2	
R580	1	1	2	2	

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange- peel, however no crack.


Packaging

Standard coils with outside diameters up to 1200 mm Traverse-wound coils with drum weights up to 500 kg Multiple-coil up to 3 tons

Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request Strip width from 8.5 mm
Electroplated and Hot-dip tinned strip available

Electrical Conductivity

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.

Material Designation

Boway designation	boway 19010
UNS	C19010
EN	CuNiSi
JIS	
GB(China)	

Chemical Composition*

Ni	1.5	%
Si	0.25	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Suitable
Suitable
Suitable
Suitable
Notrecommended

Ideal for power connectors

Characteristics

Medium electrical conductivity and medium strength combined with good stress-relaxation resistance, good corrosion resistance softening resistance and bending performances. For Tin plated strip used 120 °C maximum.

Fabrication Properties

Cold forming	Good
Machining	Fair
Electroplating	Good
Hot dip tinning	Good
Laser welding	Suitable
Resistance welding	Average
Soft soldering	Good

8.9	g/cm ³
57	%IACS
33	MS/m
260	W/(m·K)
0.377	J/(g•k)
130	GPa
0.33	
16.8	10 ⁻⁶ /K
	57 33 260 0.377 130 0.33

^{*} Typical values at room temperature for reference.

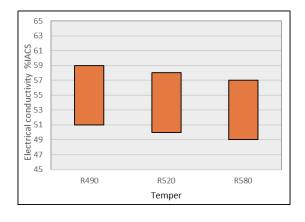
^{**} average value between 20-300° C

Mechanical Properties

Temper	Tensile stren	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R490(TM04)	490 - 560	71 - 81	≥ 410	145 - 175	≥10
R520(TM06)	520 - 590	75 - 86	≥ 460	150 - 180	≥8
R580(TM08)	580 - 655	84 - 95	≥520	180 - 220	≥6

^{*}For reference only

Bendability Thickness range: ≤ 0.5 mm, bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R490(TM04)	0.8	1	1.5	2
R520(TM06)	1	2	1.5	2
R580(TM08)	1	1	2	3

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.

Packaging

Standard coils with outside diameters up to 1200 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

Electrical Conductivity

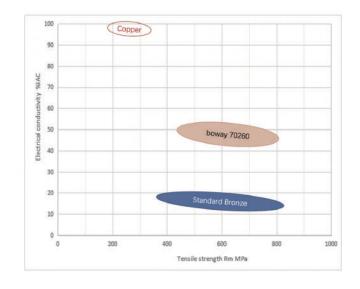
Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Hot-dip tinned and electroplated strip available.

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.


Material Designation

Boway designation	boway 70260
UNS	C70260
EN	CuNi2Si
JIS	
GB(China)	QSi0.6-2

Chemical Composition*

Ni	2	%
Si	0.5	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Suitable
Power Connector	Suitable
Miniaturized Connector	Suitable
Switch / Relay	Suitable
Semiconductor	Notrecommended
Switch / Relay	Suitable

Ideal for automotive connectors

Characteristics

High strength ,good electrical conductivity combined with excellent bending performance.

Good corrosion resistance and softening resistance as well as stress relaxation performance.

Fabrication Properties

Cold forming	Very good
Machining	Not suitable
Electroplating	Good
Hot dip tinning	Good
Laser welding	Good
Resistance welding	Average
Soft soldering	Good

Density	8.85	g/cm ³
Electrical conductivity @ 20° C	49	%IACS
	28	MS/m
Thermal conductivity @20°C	190	W/(m·K)
Specific heat capacity	0.399	J/(g·k)
Modulus of elasticity	132	GPa
Poisson's ratio	0.33	
Coefficient of	17	10 ⁻⁶ /K
thermal expansion**		

^{*} Typical values at room temperature for reference.

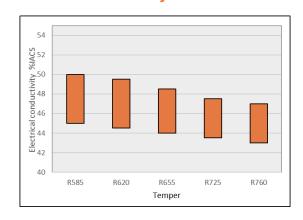
^{**} average value between 20-300° C

Mechanical Properties

Temper	Tensile streng	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R585(TM00)	585 - 655	85 – 95	≥ 450	160 – 210	10
R620(TM0S)	620 - 725	90 - 105	≥520	180 – 215	6
R655(TM02)	675 – 745	98 - 108	620 - 725	190 – 225	5
R725(TM03)	725 – 830	105 - 120	≥655	200 - 240	2
R760(TM04)	760 – 860	110 - 125	≥690	220 - 260	1

^{*}For reference only

Bendability Thickness range: ≤ 0.5 mm, bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R585(TM00)	0	0	0.5	1
R620(TM0S)	0.5	0.5	1	1.5
R655(TM02)	0.5	1	1	2.5
R725(TM03)	1	1.5	1.5	3.5
R760(TM04)	1.5	3	2	6

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.

Packaging

Standard coils with outside diameters up to 1200 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

Electrical Conductivity

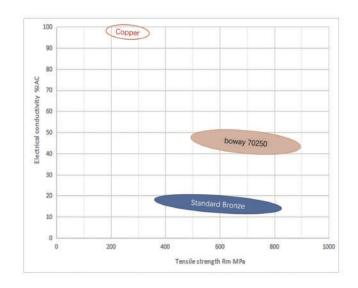
Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Hot-dip tinned and electroplated strip available.

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.


Material Designation

Boway designation	boway 70250
UNS	C70250
EN	CuNi3SiMg
JIS	C7025
GB(China)	

Chemical Composition*

Ni	3	%
Si	0.65	%
Mg	0.15	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Very suitable
Power Connector	Suitable
Miniaturized Connector	Suitable
Switch / Relay	Very suitable
Semiconductor	Very suitable

Ideal for miniaturized connector and Lead frame design, special qualities for PRESSFIT, QFP, QFN available.

Characteristics

High strength combined with good electrical conductivity. Very good stress relaxation resistance, good softening resistance as well as good bending formability.

Standard HPA for Automotive and Semiconductor.

Fabrication Properties

Cold forming	Very good
Machining	Not suitable
Electroplating	Good
Hot dip tinning	Good
Laser welding	Good
Resistance welding	Average
Soft soldering	Good

Density	8.8	g/cm ³
Electrical conductivity @ 20° C	45	%IACS
	26	MS/m
Thermal conductivity @20°C	190	W/(m·K)
Specific heat capacity	0.399	J/(g·k)
Modulus of elasticity	130	GPa
Poisson's ratio	0.33	
Coefficient of	17.6	10 ⁻⁶ /K
thermal expansion**		

^{*} Typical values at room temperature for reference.

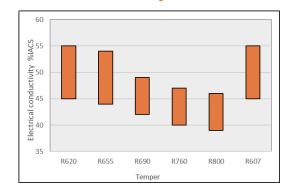
^{**} average value between 20-300° C

Mechanical Properties

Temper	Tensile streng	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R620(TM00)	620 - 760	90 - 110	≥550	180 - 220	≥14
R655(TM02)	655 – 825	95 – 120	≥ 585	190 - 240	≥7
R690(TM03)	690 - 860	100 - 125	≥655	210 - 250	≥5
R760(TM04)	760 - 850	110 - 123	≥720	220 - 270	≥2
R800(TM06)	800 - 880	116 - 128	≥780	250 - 290	≥1
R607(TR02)	607 - 726	88 - 106	≥550	180 - 220	≥6

^{*}For reference only

Bendability Thickness range: ≤ 0.5 mm, bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R620(TM00)	0	0	0.5	0.5
R655(TM02)	0.5	0.5	1.5	2
R690(TM03)	1	1	2	2
R760(TM04)	1.5	1.5	2.5	2.5
R800(TM06)	2	3	2	3.5

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange- peel, however no crack.

Packaging

Standard coils with outside diameters up to 1200 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

Electrical Conductivity

Dimensions available

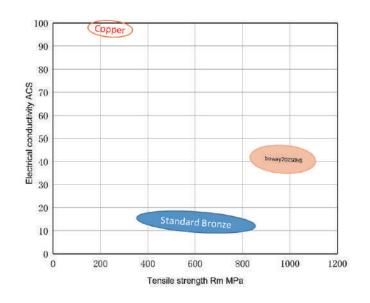
Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Hot-dip tinned and electroplated strip available.

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0,5 * of tensile strength.

boway 70250HS


Material Designation

Boway designation	boway 70250HS
UNS	C70250
EN	CuNi4SiMg
JIS	C7025
GB(China)	

Chemical Composition*

Ni	4	%
Si	0.75	%
Mg	0.15	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Very suitable
Power Connector	Suitable
Miniaturized Connector	Very suitable
Switch / Relay	Very suitable
Semiconductor	Suitable

Ideal for miniaturized connector ,especially CPU socket ,relay and SIM card connector etc.

Characteristics

Ultra high strength combined with good electrical conductivity. Very good stress relaxation resistance.

Fabrication Properties

Cold forming	Very good
Machining	Not suitable
Electroplating	Good
Hot dip tinning	Good
Laser welding	Good
Resistance welding	Average
Soft soldering	Good

Density	8.8	g/cm ³
Electrical conductivity @ 20°C	42	%IACS
	24	MS/m
Thermal conductivity @20°C	190	W/(m·K)
Specific heat capacity	0.399	J/(g·k)
Modulus of elasticity	130	GPa
Poisson's ratio	0.33	
Coefficient of	17.6	10 ⁻⁶ /K
thermal expansion**		

^{*} Typical values at room temperature for reference.

^{**} average value between 20-300° C

boway 70250HS

Mechanical Properties

Temper	Tensile streng	th	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R840(TM08)	840 - 920	122 - 134	≥810	260 - 300	≥1
R900(TM10)	900 - 1000	131 - 146	≥880	270 - 330	≥1
R1000(TM12)	>1000	> 145	≥950	300 - 350	

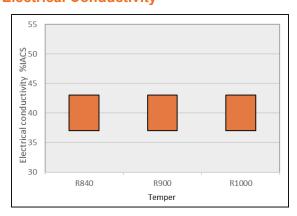
^{*}For reference only

Bendability Thickness range: ≤ 0.5 mm, bending width: 10 mm

Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R840(TM08)	2.0	2.5		
R900(TM10)				
R1000(TM12)				

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.

Packaging


Standard coils with outside diameters up to 1200 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

Dimensions available

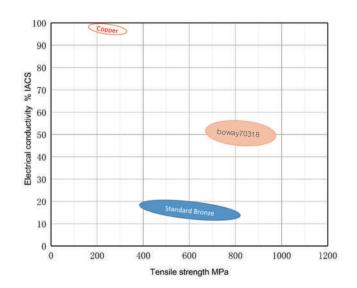
Strip thickness 0.07 - 0.25 mm, other gauges on request. Strip width from 8.5 mm.

Hot-dip tinned and electroplated strip available.

Electrical Conductivity

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0,5 * of tensile strength.


Material Designation

Boway designation	boway 70318
UNS	C70138
EN	CuNi3CoSi
JIS	
GB(China)	

Chemical Composition*

Ni	3	%
Со	0.9	%
Si	0.9	%
Cu	Rem.	
Other	≤0.5	%

^{*}Nominal composition

Application Target

Signal Connector	Well suitable
Power Connector	Suitable
Miniaturized Connector	Suitable
Switch / Relay	Well suitable
Semiconductor	Notrecommended

Well suited for BTB-Connectors, particularly for USB Type-C, relay springs, high speed connectors and others

Characteristics

Very high strength combined with excellent electrical and thermal conductivity. Very good stress relaxation resistance, good solderability as well as good bending formability for this strength level. Not sensitive against stress corrosion cracking.

Fabrication Properties

Cold forming	Good
Machining	Less suitable
Electroplating	Good
Hot dip tinning	Good
Laser welding	Good
Resistance welding	Good
Soft soldering	Suitable

Density	8.82	g/cm ³
Electrical	50	%IACS
conductivity @ 20° C	29	MS/m
Thermal conductivity @20°C	190	W/(m·K)
Specific heat capacity	0.38	J/(g·K)
Modulus of elasticity	130	GPa
Poisson's ratio	0.33	
Coefficient of thermal expansion**	17.6	10 ⁻⁶ /K

 $^{^{\}ast}$ Typical values at room temperature for reference.

^{**} Average value between 20-300° C

Mechanical Properties

Temper	Tensile stren	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R690 (TM02)	690 - 830	100 - 120	≥680	≥200	≥6
R770 (TM04)	770 - 900	110 - 130	≥750	≥220	≥ 4
R840 (TM06)	840 - 970	122 - 140	≥810	≥240	≥1

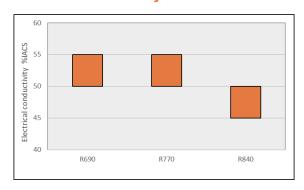
^{*}For reference only

Bendability Bending thickness: 0.08 – 0.20 mm, bending width: 10 mm

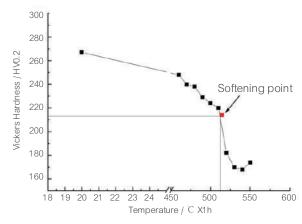
Temper	90° R/T		180° R/T
	Good Way	Bad Way	Good Way Bad Way
R690 (TM02)	0.8	1.0	
R770 (TM04)	1.5	1.5	
R840 (TM06)	2.0	2.0	

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange- peel, however no crack.

Packaging

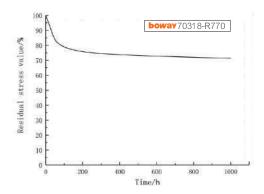

Standard coils with outside diameters up to 1300 mm Traverse-wound coils with drum weights up to 500 Kg Multiple-coil up to 3 tons

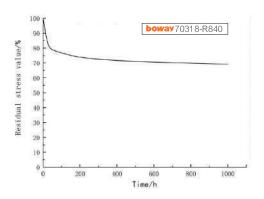
Dimensions available


Strip thickness 0.08 - 0.20 mm, other gauges on request Strip width from 9 mm $\,$

Electroplated and Hot-dip tinned strip available

Electrical Conductivity


Softening Resistance



The values were measured according to the standard GB/T 33370-2016.

Thermal Stress Relaxation

Testing conditions:

Sample: parallel to rolling direction Temperature: 150 °C
Initial stress: 80% × Rp0.2 Standard: JCBA T309-2004

Stress Relaxation is measured on stress relief annealed specimens parallel to rolling direction.

Total stress relaxation depends on the applied stress level and may consist of initial plastic set, whereas thermal stress relaxation reflects the true material properties independent on stress level.

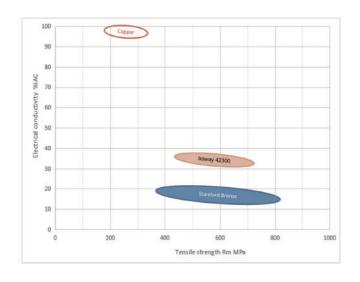
Please note that any cold deformation might change material properties and will increase stress relaxation

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 1/2 of tensile strength.

NINGBO BOWAY ALLOY MATERIAL CO., LTD

Address: Binhai Industry Zone, Yinzhou District, Ningbo City, Zhejiang Province, China www.bowayalloy.com Tel: +86-574-89016078 Fax: +86-574-89016059


Material Designation

Boway designation	boway 42300
UNS	C42300
EN	
JIS	
GB(China)	

Chemical Composition*

Cu	89	%
Sn	1	%
Ni	1	%
Si	0.2	%
Zn	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Very suitable
Power Connector	Suitable
Miniaturized Connector	Notrecommended
Switch / Relay	Very suitable
Semiconductor	Notrecommended

Superior performance alternative for phosphor bronze.

Characteristics

Excellent formability and high strength combined with medium electrical conductivity. Improved stress relaxation Vs Bronze. Not sensitive to stress corrosion cracking.

Recyclable friendly for tinned scraps.

Fabrication Properties

Cold forming	Good
Machining	Not suitable
Electroplating	Good
Hot dip tinning	Good
Laser welding	Good
Resistance welding	Good
Soft soldering	Very good

Density	8.88	g/cm ³
Electrical	32	%IACS
conductivity @ 20° C	18	MS/m
Thermal conductivity @20°C	125	W/(m·K)
Specific heat capacity	0.43	J/(g·k)
Modulus of elasticity	120	GPa
Poisson's ratio	0.33	
Coefficient of	16.7	10 ⁻⁶ /K
thermal expansion**		
* T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

^{*} Typical values at room temperature for reference.

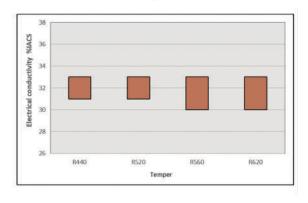
^{**} average value between 20-300° C

Mechanical Properties

Temper	Tensile stren	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R440(1/2H)	440 - 540	64 - 79	≥ 420	140 - 170	≥8
R520(3/4H)	520 - 620	76 - 90	≥500	150 - 190	≥6
R560(H)	560 - 660	82 - 96	≥ 550	170 - 210	≥3
R620(EH)	620 - 720	90 - 105	≥590	190 - 220	≥1

^{*}For reference only

Bendability Thickness range: ≤ 0.5 mm, bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R440(1/2H)	0	0.5	0	1
R520(3/4H)	0	0.5	0.5	1.5
R560(H)	0.5	1.5	1.5	2.5
R620(EH)	1	2	2	5

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.

Packaging

Standard coils with outside diameters up to 1200 mm, Traverse-wound coils with drum weights up to $500 \, \text{kg}$ Multiple-coil up to $3 \, \text{tons}$.

Electrical Conductivity

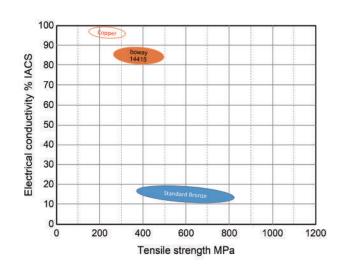
Dimensions available

Strip thickness 0.1 - 2.0 mm, other gauges on request. Strip width from 10 mm.

Hot-dip tinned and electroplated strip available.

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.


Material Designation

Boway designation	boway 14415
UNS	C14415
EN	CuSn0.15
JIS	
GB(China)	

Chemical Composition*

Sn	0.15	%
Cu	Rem	

^{*} Nominal composition

Application Target

Signal Connector	Suitable
Power Connector	Very suitable
Miniaturized Connector	Suitable
Switch / Relay	Suitable
Semiconductor	Suitable

Ideal for power connectors

Characteristics

High conductivity and medium strength, Excellent bending performance, formability and good corrosion resistance.

Fabrication Properties

Cold forming	Good
Machining	Not suitable
Electroplating	Good
Hot dip tinning	Good
Laser welding	Good
Resistance welding	Good
Soft soldering	Good

Density	8.93	g/cm ³
Electrical	83	%IACS
conductivity @ 20° C	48	MS/m
Thermal conductivity @20°C	330	W/(m•K)
Specific heat capacity	0.385	J/(g·K)
Modulus of elasticity	120	GPa
Poisson's ratio	0.33	
Coefficient of	17.3	10 ⁻⁶ /K
thermal expansion**		
* T ' 1 1 1 1 1		

^{*} Typical values at room temperature for reference. ** Average value between 20-300° C

Mechanical Properties

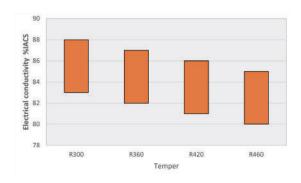
Temper	Tensile stren	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R300	300 - 370	44 - 54	≥250	85 - 110	≥4
R360	360 - 430	52 - 62	≥300	110 - 130	≥3
R420	420 - 490	61 - 71	≥350	120 - 150	≥2
R460	≥ 460	≥67	≥ 410	≥130	

^{*}For reference only

Bendability Bending thickness ≤ 0.5 mm, Bending width: 10 mm.

Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R300	0	0	0.5	0.5
R360	0	0	1	1
R420	1	1	2	2.5
R460	1.5	2	2.5	4

 $^{90^{\}circ}\ \text{bend test According to EN ISO 7438, }180^{\circ}\ \text{bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.}$


Packaging

Standard coils with outside diameters up to 1300 mm Traverse-wound coils with drum weights up to 500 kg Multiple-coil up to 3 tons

Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request Strip width from 8.5 mm
Electroplated and Hot-dip tinned strip available

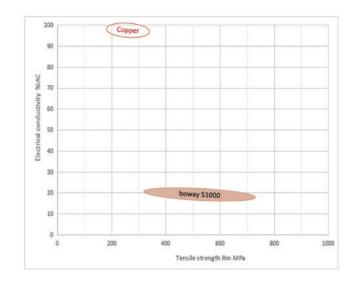
Electrical Conductivity

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.

This datasheet is for your general information only and is not subject to revision. No claim can be derived from it unless there is evidence of intent or gross negligence. The data given is to our best knowledge, no warranty can be derived from the data provided. The given Info may not replace the customers own tests.

Rev. 2021, 12


Material Designation

Boway designation	boway 51000
UNS	C51000
EN	CuSn5
JIS	C5102
GB(China)	QSn5-0.2

Chemical Composition*

Sn	5	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Suitable
Power Connector	Not Suitable
Miniaturized Connector	Suitable
Switch / Relay	Suitable
Semiconductor	Notrecommended

Characteristics

Excellent formability and high strength combined with low sensitivity against stress corrosion cracking.

Very good corrosion resistance as well as excellent solderability.

Fabrication Properties

Cold forming	Very good
Machining	Not suitable
Electroplating	Very good
Hot dip tinning	Very good
Welding	Good

Density	8.85	g/cm ³
Electrical conductivity @ 20° C	18	%IACS
	10	MS/m
Thermal conductivity @20°C	96	W/(m·K)
Specific heat capacity	0.38	J/(g•k)
Modulus of elasticity	120	GPa
Poisson's ratio	0.33	
Coefficient of	17.8	10 ⁻⁶ /K
thermal expansion**		

^{*} Typical values at room temperature for reference.

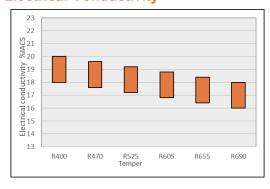
^{**} average value between 20-300° C

Mechanical Properties

Temper	Tensile streng	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R400(1/2H)	400 - 505	58 - 73	≥325	125 - 170	≥10
R470(3/4H)	470 - 545	68 - 79	≥ 420	145 - 185	≥10
R525(H)	525 - 625	76 - 91	≥510	170 - 210	≥9
R605(EH)	605 - 710	88 - 103	≥585	180 - 220	≥2
R655(SH)	655 - 760	95 - 110	≥635	210 - 250	≥1
R690(ESH)	690 - 785	100 - 114	≥675	220 - 270	≥1

^{*}For reference only

Bendability bending thickness: ≤ 0.5 mm, bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R400(1/2H)	0	0.5	0	1.5
R470(3/4H)	0	1	0.5	1
R525(H)	0	1.5	1	2
R605(EH)	1	2	1.5	3
R655(SH)	1	2.5	2	4
R690(ESH)	_	_	_	_

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange- peel, however no crack.

Packaging

Standard coils with outside diameters up to 1300 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

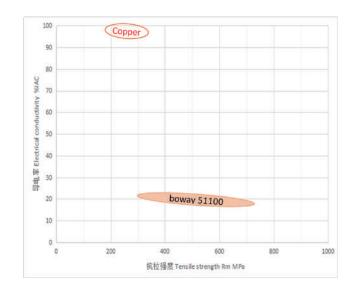
Electrical Conductivity

Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.
Electroplated and HDT strip available

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.


Material Designation

Boway designation	boway 51100
UNS	C51100
EN	CuSn4
JIS	C5111
GB(China)	QSn4-0.3

Chemical Composition*

Sn	4	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Suitable
Power Connector	Not Suitable
Miniaturized Connector	Suitable
Switch / Relay	Suitable
Semiconductor	Notrecommended

Characteristics

Excellent formability and medium/high strength combined with low sensitivity against stress corrosion cracking.

Very good corrosion resistance as well as excellent solderability.

Fabrication Properties

Cold forming	Very good
Machining	Not suitable
Electroplating	Very good
Hot dip tinning	Very good
Welding	Good

Density	8.8	g/cm ³
Electrical conductivity @ 20°C	21	%IACS
	12	MS/m
Thermal conductivity @20°C	100	W/(m·K)
Specific heat capacity	0.377	J/(g·k)
Modulus of elasticity	120	GPa
Poisson's ratio	0.33	
Coefficient of	17.8	10 ⁻⁶ /K
thermal expansion**		

^{*} Typical values at room temperature for reference.

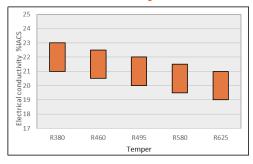
^{**} average value between 20-300° C

Mechanical Properties

Temper	Tensile stren	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R380(1/2H)	380 - 485	55 - 70	≥290	110 - 160	≥12
R460(3/4H)	460 - 565	67 - 82	≥ 440	150 - 190	≥6
R495(H)	495 - 600	72 - 87	≥485	160 - 200	≥2
R580(EH)	580 - 685	84 - 99	≥560	180 - 220	≥1
R625(SH)	625 - 725	91 - 105	≥605	200 - 240	≥1

^{*}For reference only

Bendability bending thickness: ≤ 0.5 mm, bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R380(1/2H)	0	0	0	0
R460(3/4H)	0	0	0	1
R495(H)	0	0.5	0	1.5
R580(EH)	0.5	1.5	1	2
R625(SH)	0.5	2	1	3

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.

Packaging

Standard coils with outside diameters up to 1300 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

Electrical Conductivity

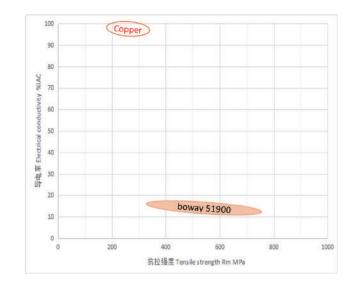
Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Electroplated and Hot-dip tinned strip available

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0,5 * of tensile strength.


Material Designation

Boway designation	boway 51900
UNS	C51900
EN	CuSn6
JIS	C5191
GB(China)	QSn6.5-0.1

Chemical Composition*

Sn	6	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Suitable
Power Connector	Not Suitable
Miniaturized Connector	Suitable
Switch / Relay	Suitable
Semiconductor	Notrecommended

Characteristics

Excellent formability and high strength combined with low sensitivity against stress corrosion cracking.

Very good corrosion resistance as well as excellent solderability. Low hot cracking tendency with resistance welding.

Fabrication Properties

Cold forming	Very good
Machining	Not suitable
Electroplating	Very good
Hot dip tinning	Very good
Welding	Good

Danish.	0.0	/ 3
Density	8.8	g/cm ³
Electrical conductivity @ 20° C	15	% IACS
	9	MS/m
Thermal conductivity @20°C	75	W/(m·K)
Specific heat capacity	0.377	J/(g·k)
Modulus of elasticity	120	GPa
Poisson's ratio	0.33	
Coefficient of	18.5	10 ⁻⁶ /K
thermal expansion**		

^{*} Typical values at room temperature for reference.

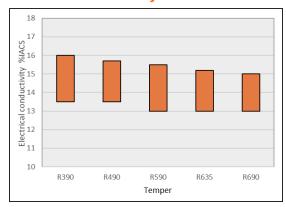
^{**} average value between 20-300° C

Mechanical Properties

Temper	Tensile stren	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R390(1/4H)	390 - 510	57 - 74	≥360	100 - 160	≥35
R490(1/2H)	490 - 620	72 - 90	≥ 420	150 - 205	≥20
R590(H)	590 - 685	86 - 100	≥510	180 - 230	≥8
R635(EH)	635 - 720	93 - 105	≥570	200 - 240	≥5
R690(SH)	≥690	≥100	≥620	≥210	_

^{*}For reference only

Bendability bending thickness: ≤ 0.5 mm, bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R390(1/4H)	0	0.5	0.5	1.5
R490(1/2H)	0.5	1	1	2
R590(H)	1	1.5	2	3
R635(EH)	2	4	3	8
R690(SH)	_	_	_	_

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.

Packaging

Standard coils with outside diameters up to 1300 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

Electrical Conductivity

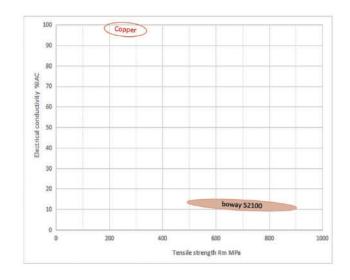
Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Electroplated and Hot-dip tinned strip available.

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.


Material Designation

Boway designation	boway 52100
UNS	C52100
EN	CuSn8
JIS	C5210
GB(China)	QSn8-0.3

Chemical Composition*

Sn	8	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Very suitable
Power Connector	Not suitable
Miniaturized Connector	Very suitable
Switch / Relay	Suitable
Semiconductor	Notrecommended

Ideal for BTB connector, audio jack and other miniaturized connectors

Characteristics

Excellent formability and high strength combined with low sensitivity against stress corrosion cracking.

Very good corrosion resistance as well as excellent solderability. Low hot cracking tendency with resistance welding.

Fabrication Properties

Cold forming	Very good
Machining	Not suitable
Electroplating	Very good
Hot dip tinning	Very good
Laser welding	Good
Resistance welding	Good
Soft soldering	Good

Density	8.8	g/cm ³
Electrical conductivity @ 20° C	12	%IACS
	7	MS/m
Thermal conductivity @20°C	67	W/(m·K)
Specific heat capacity	0.377	J/(g·k)
Modulus of elasticity	115	GPa
Poisson's ratio	0.33	
Coefficient of	18.2	10 ⁻⁶ /K
thermal expansion**		

^{*} Typical values at room temperature for reference.

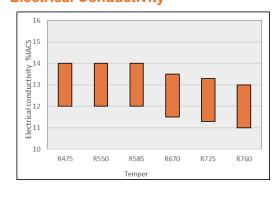
^{**} average value between 20-300° C

Mechanical Properties

Temper	Tensile streng	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A 50 %
R475(1/2H)	475 - 580	69 - 84	≥350	150 - 205	≥25
R550(3/4H)	550 - 635	80 - 92	≥ 485	170 - 210	≥18
R585(H)	585 - 690	85 - 100	≥540	185 - 235	≥12
R670(EH)	670 - 770	97 - 112	≥635	210 - 260	≥10
R725(SH)	725 - 820	105 - 119	≥690	230 - 270	≥3
R760(ESH)	760 - 840	110 - 122	≥725	245 - 285	≥2

^{*}For reference only

Bendability bending thickness: ≤ 0.5 mm, bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R475(1/2H)	0	0	0	0
R550(3/4H)	0	0.5	0.5	1
R585(H)	0	1	1	2
R670(EH)	1.5	2	2	4
R725(SH)	2.5	4	5	7
R760(ESH)	4	6	6	8

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.

Packaging

Standard coils with outside diameters up to 1300 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

Electrical Conductivity

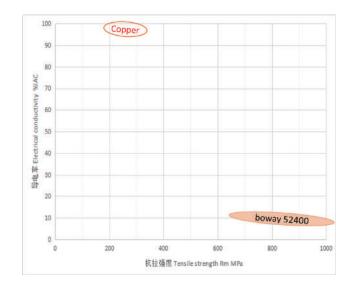
Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Electroplated and Hot-dip tinned strip available.

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0,5 * of tensile strength.


Material Designation

Boway designation	boway 52400
UNS	C52400
EN	
JIS	
GB(China)	

Chemical Composition*

S	n	10	%
С	u	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Very suitable
Power Connector	Not suitable
Miniaturized Connector	Very suitable
Switch / Relay	Suitable
Semiconductor	Notrecommended

Ideal for BTB connector, audio jack and other miniaturized connectors $% \left(1\right) =\left(1\right) \left(1$

Characteristics

Extremely high strength, fatigue resistance and low young's modulus combined with good formability.

Very good corrosion resistance as well as solderability and not sensitive against stress corrosion cracking.

Fabrication Properties

Cold forming	Very good
Machining	Not suitable
Electroplating	Very good
Hot dip tinning	Very good
Welding	Good

Density	8.78	g/cm ³
Electrical conductivity @ 20° C	10	%IACS
	6	MS/m
Thermal conductivity @20°C	50	W/(m·K)
Specific heat capacity	0.375	J/(g•k)
Modulus of elasticity	110	GPa
Poisson's ratio	0.33	
Coefficient of	18.4	10 ⁻⁶ /K
thermal expansion**		

^{*} Typical values at room temperature for reference.

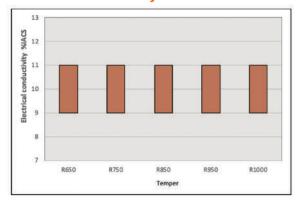
^{**} average value between 20-300° C

Mechanical Properties

Temper	Tensile stren	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R650(H)	650 - 750	95 - 109	≥ 550	200 - 240	≥11
R750(EH)	750 - 850	109 - 124	≥650	230 - 270	≥9
R850(SH)	850 - 950	124 - 138	≥750	250 - 300	≥5
R950(ESH)	≥950	≥138	≥870	> 270	≥1
R1000(XSH)	≥1000	≥145	≥930	> 290	_

^{*}For reference only

Bendability bending thickness: 0.06-0.5 mm, bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R650(H)	1	1	1.5	1.5
R750(EH)	1.5	2	2	2.5
R850(SH)	2	2.5	3	4
R950(ESH)	_		_	_
R1000(XSH)	_	_	_	_

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.

Packaging

Standard coils with outside diameters up to 1300 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

Electrical Conductivity

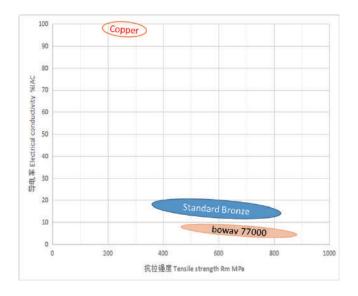
Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Electroplated and Hot-dip tinned strip available.

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.


Material Designation

Boway designation	boway 77000
UNS	C77000
EN	CuNi18Zn27
JIS	C7701
GB(China)	BZn18-26

Chemical Composition*

Ni	18	%
Cu	55	%
Zn	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Suitable
Power Connector	Not suitable
Miniaturized Connector	Suitable
Switch / Relay	Suitable
Shielding	Very suitable

Ideal for EMI shielding ,gaskets etc.

Characteristics

Excellent ductility combined with very good corrosion resistance in fresh water and see water.

Very good behavior against electromagnetic interference as well as excellent stress relaxation resistance and solderability. Low sensitivity of stress corrosion cracking.

Fabrication Properties

Cold forming	Very good
Machining	Less Suitable
Electroplating	Very good
Hot dip tinning	Very good
Laser welding	Good
Resistance welding	Very good
Soft soldering	Very good

Density	8.7	g/cm ³
Electrical conductivity @ 20° C	7	%IACS
	4	MS/m
Thermal conductivity @20°C	32	W/(m·K)
Specific heat capacity	0.34	J/(g•k)
Modulus of elasticity	135	GPa
Poisson's ratio	0.33	
Coefficient of	16.7	10 ⁻⁶ /K
thermal expansion**		

^{*} Typical values at room temperature for reference.

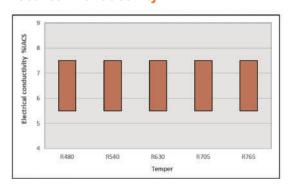
^{**} average value between 20-300° C

Mechanical Properties

Temper	Tensile streng	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R480(H/4)	480 - 660	70 - 96	≥230	120 - 150	≥25
R540(H/2)	540 - 655	79 - 95	≥390	150 - 210	≥ 20
R630(H)	630 - 735	92 - 107	≥500	180 - 240	_
R705(EH)	705 - 805	103 - 117	≥ 550	210 - 260	
R765(SH)	765 - 865	111 - 126	≥650	230 - 270	_

^{*}For reference only

Bendability bending thickness: 0.1-0.5 mm, bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R480(H/4)	0	0	0	1.5
R540(H/2)	0	1.5	1.5	3
R630(H)	1.5	2	2	4
R705(EH)	2	4	3	6
R765(SH)	_	_	_	_

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.

Packaging

Standard coils with outside diameters up to 1300 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

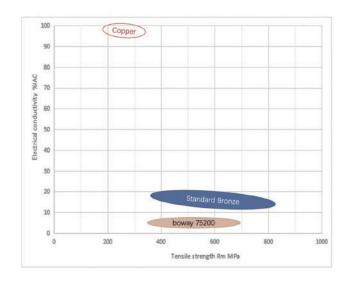
Electrical Conductivity

Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.



Material Designation

Boway designation	boway 75200
UNS	C75200
EN	
JIS	C7521
GB(China)	BZn18-18

Chemical Composition*

Ni	18	%
Cu	64	%
Zn	Rem.	

Application Target

suitable
ble
ble
suitable

Ideal for EMI shielding, gasket etc.

Characteristics

Excellent ductility combined with very good corrosion resistance in fresh water and see water .

Very good behavior against electromagnetic interference as well as excellent stress relaxation resistance and solderability. Low sensitivity to stress corrosion cracking.

Fabrication Properties

Cold forming	Very good
Machining	Less suitable
Electroplating	Very good
Hot dip tinning	Very good
Laser welding	Good
Resistance welding	Very good
Soft soldering	Very good

Density	8.7	g/cm ³
Electrical conductivity @ 20°C	7	%IACS
	4	MS/m
Thermal conductivity @20°C	32	W/(m·K)
Specific heat capacity	0.34	J/(g·k)
Modulus of elasticity	135	GPa
Poisson's ratio	0.33	
Coefficient of	16.8	10 ⁻⁶ /K
thermal expansion**		

^{*} Typical values at room temperature for reference.

^{**} average value between 20-300° C

Mechanical Properties

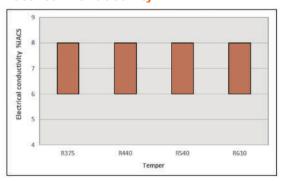
Temper	Tensile stren	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R375(O)	≥375	≥55	≥180	90 - 120	≥20
R440(H/2)	440 - 570	64 - 83	≥250	120 - 180	_
R540(H)	540 - 640	79 - 93	≥ 420	150 - 210	_
R610(EH)	≥ 610	≥89	≥520	≥185	_

^{*}For reference only

Bendability bending thickness: 0.08-0.2 mm, bending width: 10 mm

Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R375(O)	0	0	0	0
R440(H/2)	0	1	0	2
R540(H)	1	3	2	4
R610(EH)	_	_	_	_

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.


Packaging

Standard coils with outside diameters up to 1300 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

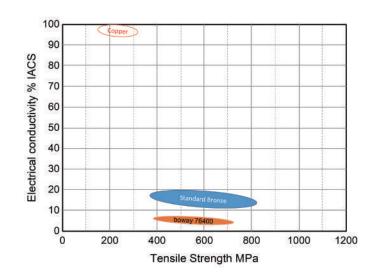
Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Electrical Conductivity

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.


Material Designation

Boway designation	boway 76400
UNS	C76400
EN	CuNi18Zn20
JIS	-
GB (China)	BZn18-20

Chemical Composition*

Cu	62	%
Ni	18	%
Zn	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Suitable
Power Connector	Not suitable
Switch / Relay	Suitable
Shielding	Very suitable
Ideal for Shielding	

Ideal for power connectors

Characteristics

Excellent ductility with very good corrosion in fresh water and sea water. Very good behavior against electromagnetic interference as well as excellent stress relaxation resistance and solderability. Low sensitivity to stress corrosion cracking.

Fabrication Properties

•	
Cold forming	Good
Machining	Not suitable
Electroplating	Very good
Hot dip tinning	Very good
Laser welding	Good
Resistance welding	Very good
Soft soldering	Very good

Density	8.7	g/cm ³
Electrical	6	%IACS
conductivity @ 20° C	3.5	MS/m
Thermal conductivity @20°C	32	W/(m·K)
Specific heat capacity	0.38	J/(g·k)
Modulus of elasticity	135	GPa
Poisson's ratio	0,34	
Coefficient of	17.7	10 ⁻⁶ /K
thermal expansion**		

 $[\]ensuremath{^{\star}}$ Typical values at room temperature for reference.

^{**} average value between 20-300° C

Mechanical Properties

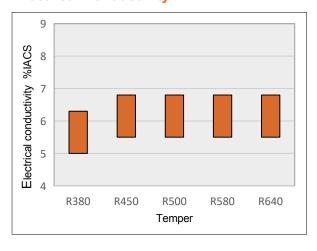
Temper	Tensile stren	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	HV0.2	HV	A50 %
R380	380 - 470	55 – 68	≤ 250	90 - 130	≥20
R450	450 - 520	65 – 75	≥ 250	115 - 160	≥9
R500	500 - 590	72 – 85	≥ 410	150 - 190	≥5
R580	580 - 670	84 – 97	≥510	180 - 210	≥3
R640	640 - 730	92 – 105	≥600	200 - 230	_

*For reference only

Bendability Thickness range: ≤0.5 mm, bending width: 10mm

Temper	90° R/T		180° R/T
	Good Way	Bad Way	Good Way Bad Way
R380	0	0	
R450	0	0	
R500	0	0	
R580	0	0.5	
R640	2	3.5	

90° bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.


Packaging

Standard coils with outside diameters up to 1300 mm., Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

Dimensions available

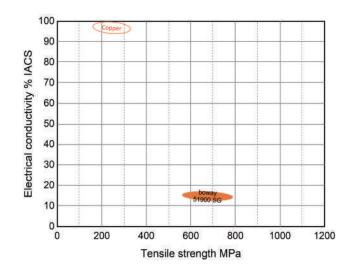
Strip thickness 0.08 - 3.0 mm, other gauges on request Strip width from 8.5 mm
Electroplated and Hot-dip tinned strip available

Electrical Conductivity

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of Tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of Tensile strength.

boway 51100 SG


Material Designation

Boway designation	boway 51100
UNS	C51100
EN	CuSn4
JIS	C5111
GB(China)	QSn4-0.3

Chemical Composition*

Sn	4	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Suitable
Power Connector	Not Suitable
Miniaturized Connector	Suitable
Switch / Relay	Suitable
Semiconductor	Notrecommended

Characteristics

Excellent bendability and fatigue performance combined with medium/high strength. Good corrosion resistance and low sensitivity against stress corrosion cracking as well as excellent solderability.

Fabrication Properties

Cold forming	Very good
Machining	Not suitable
Electroplating	Very good
Hot dip tinning	Very good
Laser welding	Good
Resistance welding	Good
Soft soldering	Very good

Density	8.8	g/cm ³
Electrical conductivity @ 20°C	21	%IACS
	12	MS/m
Thermal conductivity @20°C	100	W/(m·K)
Specific heat capacity	0.377	J/(g·k)
Modulus of elasticity	120	GPa
Poisson's ratio	0.33	
Coefficient of	17.8	10 ⁻⁶ /K
thermal expansion**		

^{*} Typical values at room temperature for reference.

^{**} average value between 20-300° C

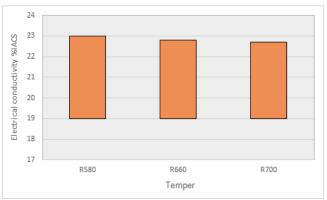
boway 51100 SG

Mechanical Properties

Temper	Tensile stren	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV0.2	A50 %
R580	580 - 680	84 - 98	≥530	170 - 230	≥13
R660	660 - 760	95 - 110	≥630	180 - 240	≥7
R700	700 - 800	101 - 116	≥690	190 - 250	≥3

^{*}For reference only

Bendability bending thickness: ≤0.4 mm bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R580	0	0	0	1
R660	0.5	2.5	1.5	3
R700	1	4	_	_

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.

Packaging

Standard coils with outside diameters up to 1300 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

Electrical Conductivity

Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Electroplated and Hot-dip tinned strip available

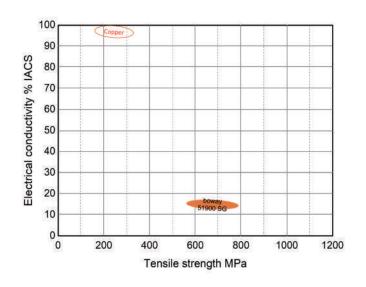
Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.

This datasheet is for your general information only and is not subject to revision. No claim can be derived from it unless there is evidence of intent or gross negligence. The data given is to our best knowledge, no warranty can be derived from the data provided. The given Info may not replace the customers own tests.

Rev.2021,9

boway 51900 SG


Material Designation

Boway designation	boway 51900
UNS	C51900
EN	CuSn6
JIS	C5191
GB(China)	QSn6.5-0.1

Chemical Composition*

Sn	6	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Suitable
Power Connector	Not Suitable
Miniaturized Connector	Suitable
Switch / Relay	Suitable
Semiconductor	Notrecommended

Characteristics

Excellent bendability and fatigue performance combined with high strength. Good corrosion resistance and low sensitivity against stress corrosion cracking as well as excellent solderability. Low hot cracking tendency with resistance welding.

Fabrication Properties

Cold forming	Very good
Machining	Not suitable
Electroplating	Very good
Hot dip tinning	Very good
Laser welding	Good
Resistance welding	Good
Soft soldering	Very good

Density	8.8	g/cm ³
Electrical conductivity @ 20°C	16	%IACS
	9	MS/m
Thermal conductivity @20°C	75	W/(m·K)
Specific heat capacity	0.377	J/(g·k)
Modulus of elasticity	120	GPa
Poisson's ratio	0.34	
Coefficient of	18.5	10 ⁻⁶ /K
thermal expansion**		

^{*} Typical values at room temperature for reference.

^{**} average value between 20-300° C

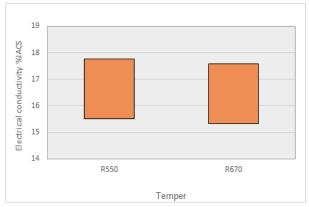
boway 51900 SG

Mechanical Properties

Temper	Tensile streng	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV0.2	A50 %
R550	550 - 650	79 - 94	≥500	170 - 230	≥16
R670	670 - 780	97 - 113	≥660	200 - 260	≥7

^{*}For reference only

Bendability bending thickness: ≤0.4 mm bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R550	0	0	0	1
R670	1	2	1.5	3

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crack.

Packaging

Standard coils with outside diameters up to 1300 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

Electrical Conductivity

Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Electroplated and Hot-dip tinned strip available.

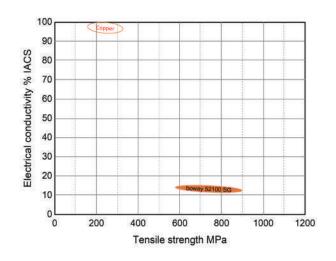
Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0.5 * of tensile strength.

This datasheet is for your general information only and is not subject to revision. No claim can be derived from it unless there is evidence of intent or gross negligence. The data given is to our best knowledge, no warranty can be derived from the data provided. The given Info may not replace the customers own tests.

Rev. 2021, 9

boway 52100 SG


Material Designation

Boway designation	boway 52100
UNS	C52100
EN	CuSn8
JIS	C5210
GB(China)	QSn8-0.3

Chemical Composition*

Sn	8	%
Cu	Rem.	

^{*} Nominal composition

Application Target

Signal Connector	Very suitable
Power Connector	Suitable
Miniaturized Connector	Very suitable
Switch / Relay	Suitable
Semiconductor	Notrecommended

Ideal for BTB connector, audio jack and other miniaturized connectors

Characteristics

Excellent bendability and fatigue performance combined with high strength. Good corrosion resistance and low sensitivity against stress corrosion cracking as well as excellent solderability. Low hot cracking tendency with resistance welding.

Fabrication Properties

Cold forming	Very good
Machining	Not suitable
Electroplating	Very good
Hot dip tinning	Very good
Laser welding	Good
Resistance welding	Good
Soft soldering	Good

Density	8.8	g/cm ³
Electrical conductivity @ 20° C	13	%IACS
	7.5	MS/m
Thermal conductivity @20°C	67	W/(m·K)
Specific heat capacity	0.377	J/(g•k)
Modulus of elasticity	115	GPa
Poisson's ratio	0.33	
Coefficient of	18.2	10 ⁻⁶ /K
thermal expansion**		

^{*} Typical values at room temperature for reference.

^{**} average value between 20-300° C

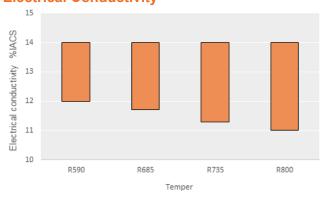
boway 52100 SG

Mechanical Properties

Temper	Tensile strength		Yield strength	Hardness*	Elongation	
	MPa	ksi	MPa	HV0.2	A50 %	
R590	590 - 705	85 -102	≥540	185 - 235	≥20	
R685	685 - 785	99 - 113	≥650	210 - 260	≥15	
R735	735 - 835	106 - 121	≥700	230 - 270	≥9	
R800	800 - 900	116 - 130	≥775	250 - 290	≥5	

^{*}For reference only

Bendability bending thickness: ≤0.5 mm bending width: 10 mm


Temper	90° R/T	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way	
R590	0	0	0	1	
R685	0	0.5	0.5	2	
R735	0	2	1	3.5	
R800	1	4	_		

^{90°} bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange-peel, however no crac

Packaging

Standard coils with outside diameters up to 1300 mm, Traverse-wound coils with drum weights up to 500 kg. Multiple-coil up to 3 tons.

Electrical Conductivity

Dimensions available

Strip thickness 0.08 - 3.0 mm, other gauges on request. Strip width from 8.5 mm.

Electroplated and Hot-dip tinned strip available.

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0,5 * of tensile strength.

This datasheet is for your general information only and is not subject to revision. No claim can be derived from it unless there is evidence of intent or gross negligence. The data given is to our best knowledge, no warranty can be derived from the data provided. The given Info may not replace the customers own tests.

Rev.2021,9

