

boway 52400

Material Designation

Boway designation	boway 52400
UNS	C52400
EN	
JIS	
GB(China)	

Chemical Composition*

Sn	10	%
Cu	Rem.	
* Nominal composition		

100 Copper 90 Electrical conductivity % IACS 80 70 60 50 40 30 20 10 boway 52400 0 0 200 400 600 800 1000 1200 Tensile strength MPa

Application Target

Signal Connector	Very suitable
Power Connector	Suitable
Miniaturized Connector	Very suitable
Switch / Relay	Suitable
Semiconductor	Notrecommend

Ideal for BTB connector, audio jack and other miniaturized connectors

Characteristics

Extremely high strength, fatigue resistance and low young's modulus combined with good formability. Very good corrosion resistance as well as solderability and not sensitive against stress corrosion cracking.

Fabrication Properties

Cold forming	Very good
Machining	Not suitable
Electroplating	Very good
Hot dip tinning	Very good
Laser welding	Good
Resistance welding	Good
Soft soldering	Good

Physical Properties*

Density	8.78	g/cm ³
Electrical conductivity @ 20°C	10	%IACS
	6	MS/m
Thermal conductivity @20°C	50	W/(m·K)
Specific heat capacity	0.375	J/(g•K)
Modulus of elasticity	110	GPa
Poisson's ratio	0.33	
Coefficient of	18.4	10 ⁻⁶ /K
thermal expansion**		

* Typical values at room temperature for reference.

** average value between 20-300° C

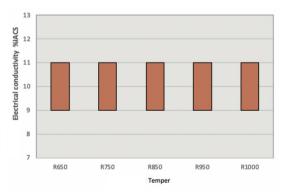
boway 52400

Mechanical Properties

Temper	Tensile stren	gth	Yield strength	Hardness*	Elongation
	MPa	ksi	MPa	HV	A50 %
R650(H)	650 - 750	95 - 109	≥550	200 - 240	≥11
R750(EH)	750 - 850	109 - 124	≥650	230 - 270	≥9
R850(SH)	850 - 950	124 - 138	≥750	250 - 300	≥5
R950(ESH)	≥950	≥138	≥870	> 270	≥1
R1000(XSH)	≥1000	≥145	≥930	> 290	_

*For reference only

Bendability bending thickness: 0.06-0.5 mm, bending width: 10 mm


Temper	90° R/T		180° R/T	
	Good Way	Bad Way	Good Way	Bad Way
R650(H)	1	1	1.5	1.5
R750(EH)	1.5	2	2	2.5
R850(SH)	2	2.5	3	4
R950(ESH)	_	_		_
R1000(XSH)	—	—	—	—

90° bend test According to EN ISO 7438, 180° bend test acc. to ASTM B820, shown values might show orange- peel, however no crack.

Packaging

Standard coils with outside diameter up to 1300 mm, Traverse-wound coils with drum weight up to 500 kg. Multiple-coil up to 3 tons.

Electrical Conductivity

Dimensions available

Strip thickness 0.06 - 2.0 mm, other gauges on request. Strip width from 8.5 mm. Electroplated and Hot-dip tinned strip available.

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 0,5 * of tensile strength.

This datasheet is for your general information only and is not subject to revision. No claim can be derived from it unless there is evidence of intent or gross negligence. The data given is to our best knowledge, no warranty can be derived from the data provided. The given Info may not replace the customers own tests.