

B30520H44008 2024-04-0310. 110. 6. 211E56:56

CU & CU-ALLOYS FOR CONNECTOR TERMINALS

Boway has the application-specific solutions you may need to make a state-of-the-art connector terminal

Requirements Connector Terminals & Springs

- Connector terminals are the heart of the electrical or electronic connector. There are many different designs typically with a male and female contact part made from a copper-based material or alloy.
- These terminals are commonly distinguished for signal or if they carry higher electrical current up to high power connectors.
- Majority of these connectors are preferably made using strips in copper and copper alloys. Due to the very different connector requirement profiles many different material solutions are required as well. Boway has the application-specific solutions you may need to make a state-of-the-art connector terminal.

Example of Specific Connector Terminal Material Requirements

Functional Requirements Connector Terminals & Springs

Key material properties used for the design of connector terminals are, e.g.

- Long term properties to assure a good contact force → Thermal stress relaxation properties
- Strength level here commonly tensile test data is used
- Hardness this as a surface property is commonly only an indicator and not specified together with the tensile test values – see EN standards
- Electrical and thermal properties
- Youngs modulus as parameter to describe the stiffness of an elastic loaded spring
- Formability/bending (e.g. 90° or 180°)
- Plateability (Sn or precious metals)
- Grain size requirements-e.g. for precise contact zones in press fit connectors

$B_{44008} = E_{15}$ $B_{44008} = E_{15}$ 2024-04-03 = 14:56:5610, 110, 6, 211

Material Requirements for a Terminal

	Terminal requirements	Material parameters		
C.	Low power dissipation	High electrical conductivity		
	Good heat dissipation	High thermal conductivity		
	High contact force	High elastic limit/ Yield strength/High spring bending limit		
	Small displacement/contact opening	High Youngs Modulus		
	High energy storing capacity (i.e., press fit)	Low Youngs Modulus		
4	Tight bending angles	Good bendability, low r/t		
	Persistent high contact force in use	Low stress relaxation		
	Persistent electrical performance in use	Good plating properties		

Alloy Selection and Fabrication Properties

- Fabrication properties of copper and copper alloys may vary according to different customer or application requirements.
- E.g. Stamping of strips may require certain minimum ductility to allow tight bending radii or sufficient formability for coining processes.
 B30520 144000% (Ex51)
- For different plating requirements we may recommend you different plating choices. See fabrication 14:56:56 properties as well mentioned in our respective datasheets.
- Aside international standards we produce strips in Cu and copper alloys to individual properties. Our Technical Marketing Team can assist you in selecting the right alloy and plating! Please contact us!
- For detailed information we offer technical training sessions for customer design centers.

Boway Alloy Map

In Figure 1 we describe the performance of different alloy regarding strength and electrical conductivity. Please note that the graph may change depending on different bending requirements or stress relaxation requirements. Please see the respective datasheets or contact our Technical Marketing Team.

1000 14-04-03 14:56:56 110.6.211

The Alloy Groups

- **Copper Sorts:** Pure coppers are mostly characterized by the highest achievable electrical conductivities in combination with lower to medium strength. Pure copper plays today an important role in the transition towards electrification of mobility and energy. Further copper is the primary choice in which highest thermal conductivity is required. We need to differentiate between oxygen containing and oxygen free sorts. Oxygen free sorts may provide more safety against hydrogen embrittlement and allows better forming performance.
- **High Copper Alloys:** High copper alloys allow already higher strength vs. pure copper without loosing too much electrical or thermal conductivity. The alloy boway 14415 is the standard alloy for connector male /pins.
- **Bronze:** Boway provides the full range of Tin-Bronze alloys with standard or extreme fine grain "Super Grain". With this extreme formability, higher strength can be realized using same chemistry.
- **Special Brass:** Boway manufactures high-end special brass as low-cost alternatives to high tin containing alloys at comparable material properties.

Special Product Adders

Hot Dip Tin coated strips (HDT)

Hot-Air leveled tin (HALT) coating reflects a well adhering Sn layer using pure Sn and tight thickness tolerances.

This technique is highly used in automotive connectors assuring a reliable and economical coating method.

Due to its application thru a liquid tin bath it creates by nature the famous intermetallic compound (IMC) assuring best adhesion to the base metal and limiting potential element diffusion during life-time.

As such whisker are commonly not any issue to HDT strips. Further details please refer to the boway HDT brochure.

Strip Product Portfolio

	Alloy System	Boway Designation	Former Designation	UNS	EN	JIS	GB (China)
	C 11	boway 11000	C11000	C11000	Cu-ETP	C1100	T2
	Cu	boway 10300	C10300	C10300	Cu-HCP	—	TUP0.003
		boway 15100	C15100	C15100	CuZr0.1	C1510	TZr0.1
	CuCr/Zr	boway 18160	C18160	C18160	CuCr0.5Zr		_
		boway 18150	C18150	C18150	CuCr1Zr		TCr1-0.15
	CuCrSiTi	boway 18070	C18070	C18070	CuCrSiTi	<u> </u>	TCr0.3-0.2-0.05
	CuNiSnCrTi	boway 18090	C18090	—	—	—	—
	CuNiP	boway 19000	PW49700	C19000	CuNi1P	<u> </u>	_
	CuTi	boway 19920	C91000	C19920	—	_	_
	CuFe	boway 19210	C19210	C19210	CuFe0.1P	C1921	TFe0.1
		boway 19400	C19400	C19400	CuFe2P	C1940	TFe2.5
		boway 19005	C19005	C19005	—	_	-
		boway 19010	C19010	C19010	CuNiSi	—	—
	CuNiSi	boway 70260	C70260	C70260	CuNi2Si	C7026	BSi2-0.45
		boway 70250	C7025	C70250	CuNi3SiMg	C7025	BSi3.2-0.7
		boway70250HS	C7025	C70250	—	C7025	—
	CuNiCoSi	boway 70318	PW47100	C70318	CuNi3CoSi	—	—
	Special	boway 42300	PW33520	C42300	CuZn10Sn1NiSi	—	—
	Brass	boway 42500	C42500	C42500	CuSn3Zn9	—	HSn88-2
		boway 14415	C14415	C14415	CuSn0.15	—	TSn0.12
	CuSn /	boway 51000	C51000	C51000	CuSn5	C5102	QSn5-0.2
	Bronze	boway 51100*	C51100	C51100	CuSn4	C5111	QSn4-0.3
	Super Fine	boway 51900	C5191	C51900	CuSn6	C5191	QSn6-0.2
	Grain Version Available	boway 52100*	C5210	C52100	CuSn8	C5210	QSn8-0.3
		boway 52400*	C5240	C52400	CuSn10	C5241	QSn10-0.2
		boway 77000	C7701	C77000	CuNi18Zn27	C7701	BZn18-26
	CuNiZn	boway 75200	C7521	C75200	CuNi18Zn18	C7521	BZn18-18
		boway 76400	C76400	C76400	CuNi18Zn20	—	BZn18-20

$\stackrel{\scriptstyle \mu_{44006}}{\scriptstyle 2024-04-03} \stackrel{\scriptstyle 14:56:56}{\scriptstyle 10.\ 110.\ 6.\ 211}$ Strip Tolerances

- Boway uses high-precision equipment which allows achieving tightest tolerances and most competitive geometric properties. Boway can achieve tolerances far tighter compared to international standards.
- Special processes can be taken during strip production in order to minimize shape deviations such as coilset, camber, twist or cross bow. This is the basis to produce high-end terminal products.

Thickness (mm)	Standard	Ultra Tolerance		
0.05-0.10	±0.005	±0.003		
>0.10-0.20	±0.006	±0.004		
>0.20-0.30	±0.008	±0.005		
>0.30-0.50	±0.012	±0.006		
>0.50-0.80	±0.015	± 0.008		
>0.80-1.30	±0.020	±0.010		
>1.30-1.80	±0.030	±0.020		
>1.80-2.30	±0.040	± 0.030		
>2.30-3.00	±0.060	±0.040		
>3.00-4.00	± 0,070	± 0,050		
Connector Strip Surfaces				

Thickness Tolerances of Connector Strips

Connector Strip Surfaces

Delivery Format

- Boway strips in coil form
- Boway strips in drum form depending geographical region
- Boway strips in boway multiple coil form depending geographical region

Width Tolerances of Connector Strips

	Thickness	Width				
Temper		≤50mm	>50- 100mm	>100- 200mm	>200- 400mm	
	0.07—0.5	±0.05	±0.10	±0.20	±0.30	
	>0.5—1.0	±0.10	±0.15	±0.20	±0.30	
	>1.0-2.0	±0.15	±0.2	±0.25	±0.40	
Non-soft	>2.0-2.5	±0.25	±0.30	±0.35	±0.50	
	>2.5-3.0	±0.50	±0.50	±0.50	±0.50	
	>3.0-4.0	±0.60	±0.70	±0.80	±1	
	0.07—0.5	±0.05	±0.10	±0.20	±0.30	
	>0.5—1.0	±0.20	±0.20	±0.25	±0.30	
Soft	>1.0-2.0	±0.20	±0.25	±0.30	±0.40	
0011	>2.0-2.5	±0.30	±0.35	±0.40	±0.50	
	>2.5-3.0	±0.50	±0.50	±0.50	±0.50	
	>3.0-4.0	±0.60	±0.70	±0.80	±1	

Possible Strip Widths: 8-600mm-depending on alloy 108-000 2024-04-03 14:56:56 10. 110. 6. 211

boway CNQ - Surface: Standard Connector Surface

- Valid for Cu alloys / Thickness below 1 mm - Ra max 0.25 μm
 - Limit of scratches feelable by finger nail

boway CNX – Surface: Connector Surface Extra

- Valid for Cu alloys / Thickness below 1 mm
 - Ra max 0.15 μm
 - Rz max 1 µm
 - Dry surface

Boway multiple coil

B30520H440082024-04-0310, 110, 6, 21114:56:56

 $B_{30520} \oplus E_{15}$ $H_{44008} \oplus E_{15}$ $2024-04-03 \ 14:56:$ 10, 110, 6, 211

Rehmühle 1, 35745 Herborn, Germany Tel.: +49 2772 5002 506 www.bowayalloy.com

Copyright © 2022 boway. All Rights Reserved. B30520 Lontinuous product development. 2024-04-03 10. 110. 6. 211 Subject to modification without prior notice due to H44008 10. 110. 6. 211

B30520 任巧達 H44008 2024-04-03 14:56:5 10.110.6.211

