boway 51100 SG ### **Material Designation** | Boway Designation | boway 51100 SG | |-------------------|----------------| | UNS | C51100 | | EN | CuSn4 | | JIS | C5111 | | GB(China) | QSn4-0.3 | ## **Chemical Composition*** | Sn | 4 | % | |----|-----------|---| | Р | 0.03-0.35 | % | | Cu | Rem. | | ^{*} Nominal composition ## **Application Target** | Signal connector | Suitable | |------------------------|----------------| | Power connector | Notrecommended | | Miniaturized connector | Suitable | | Switch/Relay | Suitable | | Semiconductor | Notrecommended | ### **Characteristics** Very fine microstructure provides excellent bendability and fatigue performance combined with high strength. Replacement for CuSn6. Good corrosion resistance and low sensitive to stress corrosion cracking as well as excellent solderability. ### **Fabrication Properties** | Cold forming | Very good | |--------------------|-----------| | Machining | Average | | Electroplating | Very good | | Hot dip tinning | Very good | | Laser welding | Good | | Resistance welding | Good | | Soft soldering | Very good | ### **Physical Properties*** | Density | 8.8 | g/cm ³ | |---------------------------|-------|---------------------| | Electrical | 19 | %IACS | | conductivity@20°C | 11 | MS/m | | Thermal conductivity@20°C | 100 | W/(m·K) | | Specific heat capacity | 0.377 | J/(g·K) | | Modulus of elasticity | 120 | GPa | | Poisson's ratio | 0.33 | | | Coefficient of | 17.8 | 10 ⁻⁶ /K | | thermal expansion** | | | ^{*} Typical values at room temperature for reference ^{**} Average value between 20–300° C ## **boway** 51100 SG ### **Mechanical Properties** | Temper | Tensile strength | | Yield strength | Elongation | Hardness* | |--------|------------------|---------|----------------|------------|-----------| | | MPa | ksi | MPa | A50 % | HV0.2 | | R580 | 580-680 | 84-98 | ≥530 | ≥13 | 170-230 | | R660 | 660-760 | 95-110 | ≥630 | ≥7 | 180-240 | | R700 | 700-800 | 101-116 | ≥690 | ≥3 | 190-250 | ^{*}For reference only ### **Bendability** Bending thickness ≤ 0.4 mm; Bending width: 10 mm | Temper | 90° R/T | | 180° R/T | 180° R/T | | |--------|----------|-----|----------|----------|--| | | Good Way | | Good Way | Bad Way | | | R580 | 0 | 0 | 0 | 1 | | | R660 | 0.5 | 2.5 | 1.5 | 3 | | | R700 | 1 | 4 | - | - | | ^{90°} bend test according to EN ISO7438, 180° bend test according to ASTM B820, shown values might show orange-peel, however no crack. #### **Packaging** Standard coils with outside diameter up to 1300 mm. Traverse-wound coils with drum weight up to 500 kg. Multiple-coil up to 3 tons. ## **Electrical Conductivity** ### **Dimensions Available** Strip thickness 0.08–0.4 mm, other gauges on request. Strip width from 8.5 mm. Electroplated and Hot-dip tinned strip available. ## **Fatigue Strength** The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength. For solid solution fine grain materials fatigue strength might increase up to 1/2 of tensile strength. This datasheet is for your general information only and is not subject to revision. No claim can be derived from it unless there is evidence of intent or gross negligence. The data given is to our best knowledge, no warranty can be derived from the data provided. The given Info may not replace the customers own tests. Rev. 2024.10